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Abstract: Adsorption isotherms provide insight into the thermodynamic properties governed by food
storage conditions. Adsorption isotherms of purple corn of the Canteño variety were evaluated at 18,
25, and 30 ◦C, for the equilibrium relative humidity (ERH) range between 0.065 and 0.95. The equilib-
rium moisture (Xe) was determined by the continuous weight-change method. Seven mathematical
models of isotherms were modeled, using the coefficient of determination R2, mean absolute error
(MAE), and estimated standard error (ESE) as the convergence criterion. Thermodynamic parameters
such as isosteric heat (qst), Gibbs Free Energy (∆G), differential entropy (∆S), activation energy (Ea),
and compliance with the isokinetic law were evaluated. It was observed that the adsorption isotherms
presented cross-linking around 75% ERH and 17% Xe, suggesting adequate storage conditions at
these values. The GAB and Halsey models reported better fit (R2 > 97%, MAE < 10%, ESE < 0.014
and random residual dispersion). The reduction of Xe from 17 to 7%, increases qst, from 7.7022 to
0.0165 kJ/g, while ∆G decreases considerably with the increase in Xe, presenting non-spontaneous
endergonic behavior, and linear relationship with ∆S, evidencing compliance with the isokinetic
theory, governed by qst. Ea showed that more energy is required to remove water molecules from
the upper layers bound to the monolayer, evaluated using CGAB. The models predicted the storage
conditions, and the thermodynamic parameters show the structural stability of the purple corn grains
of the Canteño variety during storage.

Keywords: purple corn; adsorption isotherm; isosteric heat; Gibbs free energy; differential entropy;
activation energy; isokinetic theory

1. Introduction

Pigments in the grains of purple corn (Zea mays L.), in addition to being used as
natural colorants, are attributed biological functions as antioxidants [1,2], and are found in
mainly the pericarp, aleurone, endosperm, and embryo of corn [3–6]. These compounds
present nutritional interest for their contribution to human health due to their beneficial
properties [7,8]. Similarly, purple corn, due to its color, is used in food, cosmetic and
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pharmaceutical products [9–11], and is widely consumed in countries such as Peru, Bolivia,
Ecuador, and Mexico, especially in porridge, desserts, and as a drink, due to its pleasant
flavor and striking color [12–14].

However, the functional or antioxidant properties, which purple corn grains present,
may be susceptible to changes, even losing their qualities due to storage conditions, such
as inadequate temperature and relative humidity [4,15], and the uncontrolled combina-
tion of these can allow for the development of molds and yeasts [16–19], or at the other
extreme allow weight loss, which would cause economic losses due to low humidity or the
deterioration of the grain due to cracking and wear of the food surface [20,21].

The equilibrium water content (Xe) in food is reached when the partial vapor pressure
of the material equals the vapor pressure of the air that contains it, to the ratio of the vapor
pressure of the food. The ambient air is called water activity, aw and is a determining factor
during storage [22,23].

Numerous physicochemical, semi-empirical, and empirical mathematical models have
been developed that help to study the adsorption behavior of water in foods [24–26],
in equilibrium with the atmosphere that contains it, at different storage temperatures,
called adsorption isotherms [27–29], describing the behavior of water at the level of a
monolayer (BET isotherm), multilayer (GAB isotherm) [30–32], or simply by adjusting
aw and equilibrium moisture data [33,34]. These models, such as BET and GAB, provide
information on the thermodynamic behavior of the water bound to the active sites [35,36],
on the surface of the food.

On the other hand, isotherms provide information on thermodynamic adsorption
parameters, which are useful for the design of drying and storage equipment [37–39],
thus, the isosteric heat of sorption is an indicator of the bond strength between free water
and the surface of the food, and the higher this is, the greater the energy required during
drying [40,41]. Another aspect to consider is the speed with which water molecules
dissipate in the active sites of materials or foods, which is related to entropy [26,42].
This movement of water molecules facilitates the vaporization process, which can occur
spontaneously, and can be measured using the Gibbs free energy [43,44].

There is currently a great interest in consuming foods with minimal processing, with
high nutritional value, and that also provide health benefits [45], such as purple corn;
however, these are susceptible to deterioration and loss of functionality during storage,
which would generate economic losses in the producer and marketer, for this reason, the
research aimed to study the storage conditions and thermodynamic properties of purple
corn grains.

2. Materials and Methods
2.1. Samples

Grains of purple corn (Zea mays L.) of the Canteño variety, dried outdoors, were
used, with an initial humidity of 11.03% dry basis (d.b.), produced in the fields of the José
María Arguedas National University, Santa Rosa farm at 2804 m altitude, 13◦39′05” S and
73◦26′31” W, in the province of Andahuaylas, Peru.

2.2. Construction of Adsorption Isotherms

The construction of the adsorption isotherms was based on the static gravimetric
method [46]. Nine glass jars of 200 mL with hermetic lid were conditioned, with a tripod
incorporated as the support where three corn grains were placed. Previously, the flasks
were loaded with saturated solutions of chemical substances with water activity values
between 0.06 and 0.92 (Table 1).

The jars were placed in a Memmert model 100–800 stove at 18, 25, and 30 ◦C. Weighing
of the corn grains was carried out every three days with precise analytical balance until
the samples presented a constant weight, that is, they reached equilibrium with their
atmosphere. Sodium azide at 0.25% was added to prevent microbiological growth and
grain germination for water activities above 0.5.
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Table 1. The water activity of substances for the construction of isotherms.

Substance Equation R2

Sodium hydroxide aw = 0.081− 1.128× 10−3T + 3.929× 10−5T2 − 5.092× 10−7T3 0.998

Lithium chloride Ln aw =
(

500.95
T

)
− 3.85 0.980

Potassium Acetate Ln aw =
(

861.39
T

)
− 4.33 0.970

Magnesium chloride aw = 0.365− 2.523× 10−3T + 5.071× 10−5T2 − 4.166× 10−7T3 0.963

Magnesium Nitrate Ln aw =
(

356.60
T

)
− 1.82 0.990

Potassium iodide Ln aw =
(

255.90
T

)
− 1.23 1.000

Sodium chloride Ln aw =
(

228.92
T

)
− 1.04 0.960

Potassium chloride Ln aw =
(

367.58
T

)
− 1.39 0.970

Barium chloride aw = 0.908− 4.011× 10−4T + 2.786× 10−5T2 − 2.037× 10−7T3 0.997
aw, is the water activity; T is the temperature (K). Source: Labuza et al. [46].

2.3. Determination of Equilibrium Moisture

The equilibrium humidity was calculated by the difference between the mass of the
sample that reaches equilibrium and the dry mass, according to equation:

Xe =
meq −ms

ms
, (1)

where, Xe is the equilibrium moisture on a dry basis; meq, is the mass of the sample at
equilibrium, g; and ms is the mass of the dry sample, g.

2.4. Adjustment of Adsorption Isotherms

The experimental data were fitted to adsorption isotherm models (Table 2), by non-
linear regression, applying the Quasi-Newton method, using Statistica 8.0 Software (Statsoft,
Tulsa, OK, USA). The goodness of fit was evaluated using the fit coefficient R2, mean
absolute error (MAE) (Equation (2)) and the estimated standard error (ESE) (Equation (3)),
by considering good fit when MAE < 10% and ESE lower [47–51]. Likewise, the dispersion
of the residuals of Xe was taken as a convergence criterion, which evaluates the tendency
of the systematic and random errors during the experimentation [51].

Table 2. Mathematical models of the adsorption isotherm.

Model

Temperature dependent

BET xe =
xmcBET aw

[(1−aw)(1+(cBET−1)aw)]
(2)

GAB xe =
xmcGABkGAB aw

[(1−kGAB aw)(1−kGAB aw+cGABkGAB aw)]
(3)

Oswin xe = A
[

aw
1−aw

]B (4)

Modified Henderson 1− aw = exp(−kTxn′
e ) (5)

Chung y Pfost aw = exp( A
RT exp(−Bxe)) (6)

Temperature independent
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Table 2. Cont.

Model

Halsey aw = exp
[
−A
xB

e

]
(7)

Henderson 1− aw = exp(−kxn
e ) (8)

where: A, B, CBET, kGAB, k, n, n′ are constants of the equations; Xe is the equilibrium humidity (g water/g dry
basis); Xm is the humidity of the molecular monolayer (g water/g dry mass); R is the universal gas constant; and,
T is the temperature (K).

%MAE =
100
N
∗

n

∑
i=1

∣∣∣∣∣Mei,exp −Mei,pre

Mei,exp

∣∣∣∣∣, (9)

ESE =

√
∑N

i=1 (Mei,exp −Mei,pre)
2

N − n
, (10)

where, Mei,exp is the observed experimental equilibrium moisture content; Mei,pre is the
predetermined moisture content in the observations; N is the number of experimental
observations, n is the number of constants in the model.

2.5. Thermodynamic Parameters

The isosteric heat of adsorption (qst) (or differential enthalpy) evaluates the difference
between the total heat of sorption in the purple corn and the heat of vaporization of water at
the system temperature [52], and can be estimated using the Clausius-Clapeyron equation
(Equation (11)) [53].

The value of qst was obtained by plotting ln aw vs. 1/T, at their respective humidities,
where qst/R is the slope.

∂ ln(aw)

∂(1/T)

∣∣∣∣
x
= − qst

R
(11)

where, aw is the water activity; T is the absolute temperature (K); qst is the isosteric heat
of sorption (kJ/kg); and R is the universal gas constant (8.314 kJ/kmol·K) for water
(0.4619 kJ/kg·K).

On the other hand, the qst data Xe, were fitted to the Tsami equation (Equation (12)) [53].

qst = q0exp(−Xe

X0
) (12)

where, qst is the isosteric heat of sorption when the moisture content is constant; Xe is the
equilibrium humidity (g water/g dry sample), q0 is the isosteric heat of adsorption (kJ/mol)
of the first water molecule in the food and is defined as Xe → 0⇒ qst → q0; and X0 is the
characteristic moisture content for each product.

The differential entropy of sorption (∆S) (kJ/kg·K) was calculated using the Gibbs–
Helmholtz equation (Equation (13)) [54].

∆S =
qst − ∆G

T
(13)

where ∆G is the Gibbs free energy (kJ/kg), it is expressed using Equation (14).

∆G = −RTln(aw) (14)

During the adsorption process, the variation of Gibbs free energy is related to the
variation of isosteric heat and entropy, thus by replacing Equation (14) in (13), Equation (15)
is obtained.

− ln(aw) =
qst

RT
− ∆S

R
(15)

The linear form of Equation (15), allows us to obtain the intercept and calculate ∆S.
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The enthalpy–entropy compensation theory suggests the existence of a linear relation-
ship between enthalpy and entropy according to Equation (16) [36,55,56].

qst = Tβ∆S + ∆Gβ (16)

where, Tβ is the isokinetic temperature (K); ∆Gβ is the free energy (kJ/kg) at Tβ.
Tβ is an indicator in which it is assumed that all interactions within the purple corn

grains occur with the same speed [57], while the term +∆Gβ represents whether the adsorp-
tion process is spontaneous or not (−∆Gβ).

The validity of the compensation theory was evaluated by comparing Tβ with the
harmonic mean temperature (Thm) (Equation (17)) [56,58,59], and it is valid when Tβ 6= Thm,
likewise if Tβ > Thm, the process of sorption is governed by the isosteric heat of sorption
(enthalpy of sorption), and if Tβ < Thm by the entropy [60,61].

Thm =
n

∑n
i=1 1/T

(17)

where, n is the number of used temperatures.
The effect of temperature on humidity was evaluated using the Arrhenius equation

(Equation (18)), for the GAB isotherm parameters.

ln(D) = ln(D0)−
Ea

RT
(18)

where, D is a parameter of the GAB model, D0 is a pre-exponential factor, and Ea is the
activation energy (kJ/mol).

3. Results and Discussion
3.1. Adsorption Isotherms

An equilibrium moisture, Xe, of purple corn was reached after 15 days at 18 ◦C, and in
12 days at 25 ◦C and 30 ◦C. The behavior of Xe at storage conditions is shown in Figure 1, and
a crossover of the isotherms around aw 0.75 is observed, due to the composition of purple
corn of a higher content of carbohydrates and sugars compared to other corn varieties, this
behavior is characteristic of fruits with a high sugar content [16,20,22,23,25,31,62].
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Figure 1. Adsorption isotherms adjusted with the Halsey model.

Likewise, the increase in temperature would promote the availability of active sites to
adsorb water on the corn grain surface, due to the effects caused by capillarity and humidity
interactions [23,62,63], this being a typical behavior of a type II isotherm [27,33,64,65].

3.2. Adjustment of Adsorption Isotherms

It was observed that, at 18 ◦C, the GAB and Halsey models reported R2 values of
0.967 and 0.974, MAE of 5.149% and 5.902%, and ESE 0.013 and 0.011, respectively; at
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25 ◦C, R2 values of 0.973 and 0.976, MAE 8.795% and 8.628% and ESE 0.014 and 0.012 were
found, while at 30 ◦C, R2 values were reported to be 0.984 and 0.975, MAE 8.508% and
10.412% and ESE as 0.011 and 0.013, respectively (Table 3). In the same way, both models
presented random residual dispersion at the study temperatures, which indicates that the
models better attenuate systematic and experimental errors due to repetitiveness, better
representing the adsorption phenomenon [22,25,34,66,67].

Table 3. Model parameters for adsorption isotherms.

Model Parameters R2 SEE MAE (%) Residual
Distribution

Temperature dependent

GAB

18 ◦C
Xm 0.076 0.967 0.013 5.149

RandomCGAB 1,502,959
K 0.755

25 ◦C
Xm 0.068 0.973 0.014 8.795 Random

CGAB 4,501,090
K 0.825

30 ◦C
Xm 0.064 0.984 0.011 8.508 Random

CGAB 1,812,258
K 0.842

BET

18 ◦C
Xm 0.028 0.301 0.056 33.845 Trending

CBET −19.315

25 ◦C
Xm 0.030 0.604 0.049 26.359 Trending

CBET −20.218

30 ◦C
Xm 0.029 0.594 0.051 27.66 Trending

CBET −21.015

Oswin

18 ◦C
A 0.132 0.959 0.014 6.657

RandomB 0.264

25 ◦C
A 0.127 0.957 0.016 9.171 Slightly

randomB 0.323

30 ◦C
A 0.121 0.966 0.015 9.870 Slightly

randomB 0.345

Modified
Henderson

18 ◦C
k 0.336 0.912 0.020 10.794 Trending
n 2.518

25 ◦C
k 0.130 0.903 0.024 12.346 Trending
n 2.005

30 ◦C
k 0.095 0.927 0.022 12.53 Trending
n 1.809

Chun-Pfost

18 ◦C
A −24.266 0.948 0.015 7.443

RandomB 19.759

25 ◦C
A −16.300 0.929 0.021 12.428 Trending
B 16.826

30 ◦C
A −13.974 0.940 0.020 13.612 Trending
B 16.113

Temperature independent

Halsey

18 ◦C
A 0.002 0.974 0.011 5.902

RandomB 2.867

25 ◦C
A 0.004 0.976 0.012 8.628 Random
B 2.387

30 ◦C
A 0.005 0.975 0.013 10.412 Random
B 2.276
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Table 3. Cont.

Model Parameters R2 SEE MAE (%) Residual
Distribution

Henderson

18 ◦C
k 97.702 0.912 0.020 10.794 Trending
n 2.518

25 ◦C
k 38.724 0.903 0.024 12.346 Trending
n 2.005

30 ◦C
k 28.762 0.927 0.022 12.529 Trending
n 1.809

On the other hand, the Oswin, Modified Henderson, Chun-Pfost, and Henderson
models reported R2 values > 0.90. In fact, these models are used as predictors of Xe behavior
at different relative humidities, generally for cereals and fruits [20,30,35,44,65].

Regarding the CGAB values, these were greater than unity, which indicates that the
adsorption in the monolayer is fast, that is, the humidity at the monolayer level is achieved
quickly during the first days and, as a consequence, the purple corn is prone to rapid attack
by molds and yeasts [26,27,68].

Furthermore, CGAB is high is because the surface of the purple corn grain is constituted
by a large number of active centers, including polar groups of the −CO, −COO− and
−NH3+, which allow it to establish a greater number of hydrogen bridge bonds.

On the other hand, the parameter kGAB, which is related to the standard chemical
potential between the molecules of the second layer and those of the pure liquid state, was
observed to increase with temperature (Table 3), which suggests a decrease in humidity at
low aw values.

While moisture at the monolayer Xm level of the GAB model, was found to be around
7% d.b., which is a usual behavior for corn varieties [39,69], the fact that Xm decreases
with temperature indicates that at higher temperatures, the moisture loss is greater at
the monolayer level for a defined relative humidity [67,69], due to the breaking of the
intermolecular bonds of the hydrogen bridge type between the surface of the corn grain
and the water available at the Xe level. This suggests that temperature is a critical condition
for the attack of molds and yeasts, which is a typical behavior of foods that follow type II
isotherms [24,34,36,39,54,64].

3.3. Thermodynamic Parameters

The isosteric heat of sorption qst of purple corn was determined considering aw values
calculated using the Halsey equation, for Xe between 0.07 and 0.17. Figure 2a, presents
the behavior of qst as a function of Xe, and it is observed that as the equilibrium humidity
increases, the value of qst decreases from 7.7022 to 0.0165 kJ/g, meaning this behavior is a
result of an initially high humidity at the monolayer level, requiring more energy to break
the polar and hydrogen bonds on the surface of the corn grain, and as Xe increases, the
active sites that adsorb water are no longer available, which is usual in foods with a high
carbohydrate content [39,67,69–71].

The qst values found are higher than those reported for this cereal [39,69] due to the
coloration of the purple corn grain, which is related to the presence of phenolic compounds
and sugars [2,5,15], thereby giving it a greater number of functional groups, with the
capacity to establish a greater number of bonds with water, for which it would require
more energy to eliminate it from the monolayer.
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The work required to make sorption active sites available was calculated using the
Gibbs free energy, this being a thermodynamic indicator between the corn grain and the
water [72]. Furthermore, it was observed that it decreases with the increase in temperature
and humidity. At 7% humidity, ∆G was 493.82, 344.49, and 300.67 kJ/kg at 18, 25, and 30 ◦C,
respectively, this significant change is observed at up to 15% humidity, for which similar
values of ∆G are observed (Figure 2b). Furthermore, this behavior is characteristic of grains
and cereals [35,39,41,42,73,74] because the available sites on the surface of the purple corn
grain have been occupied, consistent with the crossing of the isotherms (Figure 1).

On the other hand, it was observed that ∆G > 0, suggesting an endergonic process,
that is, a driving force, is required to initiate the binding of water molecules during
adsorption, and that as Xe increases, the availability to form bonds is lower, thereby
requiring less energy, which is characteristic of non-spontaneous processes when they reach
equilibrium, as evidenced by the adsorption systems of purple corn at different relative
humidities [41,54,75].

The availability of active sites depends on how fast water molecules are mobilized
on the surface of the purple corn grain, and this was calculated using differential entropy
(∆S) [24,42]. It was observed that ∆S decreases from 16.51 to 0.19 kJ/kg·K for the Xe interval
between 7 to 15%, presenting a rapid drop up to Xe 11% (Figure 2c), this would be due to
the greater availability of the active sites, and from this point, the mobility of the molecules
decreases, related to ∆G [19,41,76].

Similarly, a linear relationship (R2 > 0.99) was observed between qst and ∆S (Figure 2d),
that is, there is a direct relationship between the energy needed to bind free water to the
food surface, and the mobility of water molecules at the monolayer level, so the isokinetic
theory, or enthalpy–entropy compensation, applies to this experimentation [36,45,55,56].

The isokinetic temperature Tβ was 476.53 K, while Thm 297.0 K, which suggests a
sorption process governed by qst (Tβ > Thm) [60,61], which is usual behavior in seeds and
grains [24,35,41,43], likewise, this comparison established that purple corn grains remain
stable following structural modifications that could occur during water removal or drying
in the range of the study temperatures [44,77].

The GAB isotherm parameters have a thermodynamic interpretation via the activation
energy (Ea), which represents the necessary energy of the phenomena occurring at the level
of the water monolayer of the corn grain surface.
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Thus, the energy for water to be adsorbed towards the surface of the corn grain, to
form the monolayer (Xm), and bind to the specific polar groups of corn, was 10.947 kJ/mol,
for the interval from 18 to 30 ◦C (Table 4), on the other hand, the CGAB parameter is related
to the difference in energy of the molecules adsorbed in the monolayer and the upper
ones [27,44,56,68], whose value was 18.84 kJ/mol. Likewise, the parameter kGAB, which
refers to the chemical potential, that is, the energy necessary to form the bond between the
water molecules and the active sites [68], was 6.82 kJ/mol.

Table 4. Activation energy of the GAB isotherm parameters.

Parameters 18 ◦C 25 ◦C 30 ◦C Ea (kJ/mol)

Xm 0.0764 0.0677 0.0640 −10.947
CGAB 1,502,958.98 4,501,089.95 1,812,257.53 18.843

k 0.7552 0.8252 0.8418 6.820

4. Conclusions

Adsorption isotherms presented crosslinking at around 75% RH and 17% Xe at 18, 25,
and 30 ◦C, suggesting adequate storage conditions at these values. The GAB and Halsey
models reported a better fit and would allow for a description of the behavior of corn grain
moisture at different equilibrium relative humidities. The reduction of Xe between 17 and
7% occurs with an increase in the isosteric heat of adsorption, qst, from 7.7022 to 0.0165 kJ/g,
while the Gibbs free energy decreases considerably with the increase in Xe at the study
temperatures, showing a non-spontaneous endergonic behavior, and presents a positive
linear relationship with the adsorption differential entropy, evidencing the compliance of
the isokinetic theory, governed by qst, which suggests the structural stability of corn grains
during storage and drying. The activation energy showed that more energy is required to
remove water molecules from the upper layers bound to the monolayer, evaluated using
CGAB.
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